运输电气化需要越来越多的电动机(例如电动机和电动机存储系统)上的电动机,并且对电动电气的控制通常涉及多个输入和多个输出(MIMO)。本文重点介绍了基于多代理增强学习(MARL)算法的多模式混合动力汽车的能源管理策略的在线优化,该算法旨在解决MIMO控制优化,而大多数现有方法仅处理单个输出控制。基于对基于深层确定性策略梯度(DDPG)基于的MARL算法优化的多模式混合动力汽车(HEV)的能源效率的分析,提出了一种新的与多代理的合作网络物理学习。然后,通过一种新颖的随机方法来设定学习驾驶周期,以加快训练过程。最终,网络设计,学习率和政策噪声被纳入了敏感性分析中,并确定了基于DDPG的算法参数,并研究了与多代理的不同关系的学习绩效,并证明与与不完全独立的关系比率0.2是最好的。与单一代理和多代理的同情研究表明,多代理可以在单一代理方案中获得总能量的4%提高。因此,MAL的多目标控制可以实现良好的优化效果和应用效率。
translated by 谷歌翻译
作为第一个会话级的中文数据集,Chase包含两个单独的部分,即从Scratch(Chase-C)手动构建的2,003个会话,以及从英语SPARC(Chase-T)翻译的3,456个会话。我们发现这两个部分是高度差异,并且作为培训和评估数据不兼容。在这项工作中,我们介绍了SESQL,这是中文的另一个大规模会话级文本到SQL数据集,由5,028个会话组成,所有课程都是从Scratch手动构建的。为了保证数据质量,我们采用迭代注释工作流程,以促进对先前的自然语言(NL)问题和SQL查询的紧张和及时审查。此外,通过完成所有与上下文有关的NL问题,我们获得了27,012个独立的问题/SQL对,允许SESQL用作单轮多DB文本到SQL解析的最大数据集。我们通过使用三个竞争性会话级解析器,并提供详细的分析,对SESQL进行基准测试级文本到SQL解析实验。
translated by 谷歌翻译
部分微分方程(PDES)在科学和工程的许多学科中都是普遍的,难以解决。通常,PDE的闭合形式溶液不可用,数值近似方法是计算昂贵的。 PDE的参数在许多应用中是可变的,例如逆问题,控制和优化,风险评估和不确定性量化。在这些应用程序中,我们的目标是解决参数PDE而不是其中一个实例。我们所提出的方法,称为元 - 自动解码器(MAD),将参数PDES作为元学习问题求解,并利用\ Cite {Park2019DeepsDF}中的自动解码器结构来处理不同的任务/ PDE。从PDE管理方程和边界条件诱导的物理知识损失被用作不同任务的培训损失。疯狂的目标是学习一个良好的模型初始化,可以概括不同的任务,最终使未能学习的任务能够更快地学习。疯狂的灵感来自于(猜想)参数PDE解决方案的低维结构,并从流形学习的角度解释了我们的方法。最后,我们展示了疯狂的力量,虽然广泛的数值研究,包括汉堡等式,拉普尔斯方程和时域麦克斯韦方程。与其他深度学习方法相比,MAD表现出更快的收敛速度而不会失去准确性。
translated by 谷歌翻译
近年来,深入学习技术已被用来解决部分微分方程(PDE),其中物理信息的神经网络(PINNS)出现是解决前向和反向PDE问题的有希望的方法。具有点源的PDE,其表示为管理方程中的DIRAC DELTA函数是许多物理过程的数学模型。然而,由于DIRAC DELTA功能所带来的奇点,它们不能直接通过传统的PINNS方法来解决。我们提出了一种普遍的解决方案,以用三种新颖的技术解决这个问题。首先,DIRAC DELTA功能被建模为连续概率密度函数以消除奇点;其次,提出了下限约束的不确定性加权算法,以平衡点源区和其他区域之间的Pinns损失;第三,使用具有周期性激活功能的多尺度深度神经网络来提高PinnS方法的准确性和收敛速度。我们评估了三种代表性PDE的提出方法,实验结果表明,我们的方法优于基于深度学习的方法,涉及准确性,效率和多功能性。
translated by 谷歌翻译
This paper presents a practical global optimization algorithm for the K-center clustering problem, which aims to select K samples as the cluster centers to minimize the maximum within-cluster distance. This algorithm is based on a reduced-space branch and bound scheme and guarantees convergence to the global optimum in a finite number of steps by only branching on the regions of centers. To improve efficiency, we have designed a two-stage decomposable lower bound, the solution of which can be derived in a closed form. In addition, we also propose several acceleration techniques to narrow down the region of centers, including bounds tightening, sample reduction, and parallelization. Extensive studies on synthetic and real-world datasets have demonstrated that our algorithm can solve the K-center problems to global optimal within 4 hours for ten million samples in the serial mode and one billion samples in the parallel mode. Moreover, compared with the state-of-the-art heuristic methods, the global optimum obtained by our algorithm can averagely reduce the objective function by 25.8% on all the synthetic and real-world datasets.
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood information of nodes. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN models for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
translated by 谷歌翻译
Ramp merging is a typical application of cooperative intelligent transportation system (C-ITS). Vehicle trajectories perceived by roadside sensors are importation complement to the limited visual field of on-board perception. Vehicle tracking and trajectory denoising algorithm is proposed in this paper to take full advantage of roadside cameras for vehicle trajectory and speed profile estimation. Dynamic speed guidance algorithm is proposed to help on-ramp vehicles to merge into mainline smoothly, even in non-cooperative environment where mainline vehicles are not expected to slow down to accommodate on-ramp vehicles. On-site experiments were taken out in a merging area of Hangzhou Belt Highway to testify our prototype system, and simulation analysis shows our proposed algorithm can achieve significant fuel savings during the ramp merging process.
translated by 谷歌翻译
The quality of knowledge retrieval is crucial in knowledge-intensive conversations. Two common strategies to improve the retrieval quality are finetuning the retriever or generating a self-contained query, while they encounter heavy burdens on expensive computation and elaborate annotations. In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. Without extra supervision, the end-to-end joint training of QKConv explores multiple candidate queries and utilizes corresponding selected knowledge to yield the target response. To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments on conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results demonstrate that QKConv achieves state-of-the-art performance compared to unsupervised methods and competitive performance compared to supervised methods.
translated by 谷歌翻译
Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
translated by 谷歌翻译